
Introduction to Programming

Stephan Krusche

7 January 2026
Technical University of Munich

W11 Graphical User Interfaces

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Date Subject
1 15.10.25 Introduction
2 22.10.25 Control Flow in Programming
3 29.10.25 In-Depth Core Concepts*
4 05.11.25 Core Data Structures
5 12.11.25 Code Reuse and Structure
6 19.11.25 Type Flexibility and Safety
7 26.11.25 In-Depth Object Orientation*
8 03.12.25 Functional Programming Essentials
9 10.12.25 Algorithms and Data Handling

10 17.12.25 Programming Languages
11 07.01.26 Graphical User Interfaces
12 14.01.26 Recursion
13 21.01.26 Concurrency
14 28.01.26 Beyond Programming
15 04.02.26 Course Review

2

Schedule

* Repetition

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Roadmap
• Context

• Apply OOP concepts: abstraction, encapsulation, inheritance and polymorphism
• Use control structures, data types, enums, annotations, generics, collections, iterators,

lambda expressions, and streams
• Apply error handling, implement algorithms, and understand the concept of

programming languages

• Learning goals
• Understand the importance of usability and prototyping
• Differentiate between different graphical user interface frameworks
• Explain the concept of model view controller
• Implement layouts, shapes and controls in JavaFX
• Style controls and shapes in JavaFX

3

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Outline
• Usability
• JavaFX
• Layout
• User input
• Shapes
• Styling

4

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Graphical user interface (GUI)
• Enables a person (user) to communicate with a computer through the use of

symbols, visual metaphors, and pointing devices
• Provides user-friendly interaction
• Introduced in reaction to the perceived steep learning curve of command-line

interfaces (CLI)
• Actions in a GUI are usually performed through direct manipulation of the

graphical elements

5

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Command line interface / terminal

6

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

User interface and interaction design

7

App

Operating systemIntegrated circuits

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Example: macOS

8

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Example: Windows

9

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Example: Android

10

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Example: iOS

11

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Example: Excel

12

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Example: control rooms in nuclear power plants

13

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Example: false Hawaiian missile alert

14

Command to send an
actual missile alert

Message received
by residents of

Hawaii

Command to test
missile alert

What is the problem with the user interface?
• Poorly differentiated options
• Possibly no confirmation screen  
→ Developers should not underestimate users’ stress

• Problematic presentation or interaction design  
→ Designer and user model gap

What happened?
• On January 13, 2018, an emergency alert was

sent to the residents of Hawaii to warn them of
the danger

• Fortunately, this was a false alarm!

Example of a user interface disaster (see K. Flaherty)

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Usability
Measures how well a user can utilize the system functionality based on five
categories
1. Learnability: how easily/fast can a user learn to use the system?
2. Efficiency: how many steps does it take a user to complete a particular task?
3. Memorability: how quickly can a user reestablish proficiency?
4. Errors: how many errors do users make, how severe are these errors, and

how easily can they recover from the errors?
5. Satisfaction (user experience): how pleasant is the design of the user

interface?

15

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Usability
• “The system is easy to use” — one of the most frequently misused terms,

especially in advertising (often these systems are actually unusable)
• “Unusability” — the user has extreme difficulty in learning how to use or in

using the system

• Jakob Nielsen (2009): Anybody can do usability 
https://www.nngroup.com/articles/anybody-can-do-usability

• “Usability is like cooking: everybody needs the results, anybody can do it
reasonably well with a bit of training, and yet it takes a master to produce a
gourmet outcome”

16

https://www.nngroup.com/articles/anybody-can-do-usability

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

User interfaces are hard to design
• The developer and the user are not the same person

• Software engineers communicate mostly with other developers
• User interface development is about communicating with users

• The user is always right …
• Consistent problems are the system’s fault

• … but the user is not always right
• Users are no design experts

• User interface takes a lot of software development effort
• ~50% of design, implementation and maintenance

• Managers must be involved (usability management)

17

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Usability tradeoffs - example: learnability vs. efficiency

18

Question: how do you insert a table of contents into Microsoft Word?

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Usability tradeoffs - example: learnability vs. efficiency

19

Question: how do you insert a table of contents into Microsoft Word?

?

1st try: click on “Insert” in the ribbon interface

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Usability tradeoffs - example: learnability vs. efficiency

20

Question: how do you insert a table of contents into Microsoft Word?

?

1st try: click on “Insert” in the ribbon interface

2nd try: click on  
“Insert” in the Menu

?

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Usability tradeoffs - example: learnability vs. efficiency

21

Question: how do you insert a table of contents into Microsoft Word?

?

1st try: click on “Insert” in the ribbon interface

2nd try: click on  
“Insert” in the Menu

?

Solution 1: click on “References” in the ribbon interface

Table of Contents

Solution 2:  
“Index and Tables…”

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Prototyping
• “Prototyping is externalizing and making concrete a design idea for the

purpose of evaluation.“ (Bill Verplank in Muñoz & Miller-Jacobs, 1992, S. 579)  

• “Prototypes are for traversing a design space, leading to the creation of
meaningful knowledge about the final design [...], and are purposefully formed
manifestations of design ideas.“ (Lim et al., 2008, S. 3)  

• “A prototype is an early sample or model built to test a concept or process or
to act as a thing to be replicated or learned from.” (UXL Encyclopedia of
Science)

22

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Why prototyping?
• Instant gratification
• Tangibility: a prototype helps to understand a system early on
• Improves communication
• Allows early decision-making
• Mistakes can be found early
• “We want instant prototypes: they allow us to make more mistakes faster”

(Elaine Hunt, Clemson University)
• Fast changes (flexibility) and small overhead

23

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Failures are helpful
• Henry Petroski’s paradoxical approach to design

• Better information comes from designs that fail rather than from those that succeed
• Reason: failures draw more scrutiny
• Petroski says without failure, complacency sets in

• Famous quote from Petroski: “Success in engineering is defined by its failures“
• “Destructive innovation”

24

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Knowledge must be falsifiable
• Karl Popper (“objective knowledge”)

• There is no absolute truth when trying to understand reality
• One can only build theories that are “true” until somebody finds a counter example

• The truth of a theory is never certain
• You can only use phrases like: “by our best judgment”, “using state of the art

knowledge”

• Falsification: the act of disproving a theory or hypothesis

25

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Consequence for software systems
• In software engineering, any system, including a user interface, is a model

and thus a theory
• We build models to find counterexamples
• Techniques: requirements validation, user interface testing, review of the design,

source code testing, system testing, etc

• Testing: the attempt of disproving a model

26

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Methods to reach good usability
• Usability testing: watching a user interact with the system’s user interface

• Usability testing uses scenario-based design
• Involves the creation of a test scenario
• The user performs a list of tasks while the observer watches, takes notes, and

compares the observed with the specified/expected behavior

• Heuristic evaluation: a usability engineering method to find usability problems
in a user interface design

27

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Nielsen’s 10 heuristics

28

Jakob’s Ten
Usability Heuristics

www.nngroup.com/articles/ten-usability-heuristics/

Designs should keep users informed
about what is going on, through
appropriate, timely feedback.

Visibility of
System Status1

The design should speak the users'
language. Use words, phrases, and
concepts familiar to the user, rather
than internal jargon.

Match between
System and
the Real World

2
Users often perform actions by
mistake. They need a clearly marked
"emergency exit" to leave the
unwanted action.

User Control
and Freedom3

Users should not have to wonder
whether different words, situations,
or actions mean the same thing.
Follow platform conventions.

Consistency
and Standards4

Good error messages are
important, but the best designs
carefully prevent problems from
occurring in the first place.

Error
Prevention5

Minimize the user's memory load
by making elements, actions, and
options visible. Avoid making users
remember information.

Recognition
Rather Than Recall6

Shortcuts — hidden from novice users
— may speed up the interaction for
the expert user.

Flexibility and
Efficiency of Use7

Interfaces should not contain
information which is irrelevant. Every
extra unit of information in an
interface competes with the relevant
units of information.

Aesthetic and
Minimalist
Design

8
It’s best if the design doesn’t need any
additional explanation. However, it
may be necessary to provide
documentation to help users complete
their tasks.

Help and
Documentation10

Error messages should be expressed
in plain language (no error codes),
precisely indicate the problem, and
constructively suggest a solution.

Recognize,
Diagnose, and
Recover from Errors

9

Nielsen Norman Group

Interactive mall maps have
to show people where they
currently are, to help them
understand where to go next.

Users can quickly understand
which stovetop control maps
to each heating element.

Just like physical spaces,
digital spaces need quick
“emergency” exits too.

Check-in counters are usually
located at the front of hotels,
which meets expectations.

Guard rails on curvy mountain
roads prevent drivers from
falling off cliffs.

Regular routes are listed on
maps, but locals with more
knowledge of the area can
take shortcuts.

People are likely to correctly
answer “Is Lisbon the capital
of Portugal?”.

A minimalist three-legged
stool is still a place to sit.

Wrong-way signs on the
road remind drivers that
they are heading in the
wrong direction.

Information kiosks at airports
are easily recognizable and
solve customers' problems in
context and immediately.

1

EXIT

WRONG

WAY

CHECK IN

i

https://media.nngroup.com/media/articles/attachments/Heuristic_Summary1-compressed.pdf

https://media.nngroup.com/media/articles/attachments/Heuristic_Summary1-compressed.pdf

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Nielsen’s 10 heuristics (continued)

29

Jakob’s Ten
Usability Heuristics

www.nngroup.com/articles/ten-usability-heuristics/

Designs should keep users informed
about what is going on, through
appropriate, timely feedback.

Visibility of
System Status1

The design should speak the users'
language. Use words, phrases, and
concepts familiar to the user, rather
than internal jargon.

Match between
System and
the Real World

2
Users often perform actions by
mistake. They need a clearly marked
"emergency exit" to leave the
unwanted action.

User Control
and Freedom3

Users should not have to wonder
whether different words, situations,
or actions mean the same thing.
Follow platform conventions.

Consistency
and Standards4

Good error messages are
important, but the best designs
carefully prevent problems from
occurring in the first place.

Error
Prevention5

Minimize the user's memory load
by making elements, actions, and
options visible. Avoid making users
remember information.

Recognition
Rather Than Recall6

Shortcuts — hidden from novice users
— may speed up the interaction for
the expert user.

Flexibility and
Efficiency of Use7

Interfaces should not contain
information which is irrelevant. Every
extra unit of information in an
interface competes with the relevant
units of information.

Aesthetic and
Minimalist
Design

8
It’s best if the design doesn’t need any
additional explanation. However, it
may be necessary to provide
documentation to help users complete
their tasks.

Help and
Documentation10

Error messages should be expressed
in plain language (no error codes),
precisely indicate the problem, and
constructively suggest a solution.

Recognize,
Diagnose, and
Recover from Errors

9

Nielsen Norman Group

Interactive mall maps have
to show people where they
currently are, to help them
understand where to go next.

Users can quickly understand
which stovetop control maps
to each heating element.

Just like physical spaces,
digital spaces need quick
“emergency” exits too.

Check-in counters are usually
located at the front of hotels,
which meets expectations.

Guard rails on curvy mountain
roads prevent drivers from
falling off cliffs.

Regular routes are listed on
maps, but locals with more
knowledge of the area can
take shortcuts.

People are likely to correctly
answer “Is Lisbon the capital
of Portugal?”.

A minimalist three-legged
stool is still a place to sit.

Wrong-way signs on the
road remind drivers that
they are heading in the
wrong direction.

Information kiosks at airports
are easily recognizable and
solve customers' problems in
context and immediately.

1

EXIT

WRONG

WAY

CHECK IN

i

https://media.nngroup.com/media/articles/attachments/Heuristic_Summary1-compressed.pdf

https://media.nngroup.com/media/articles/attachments/Heuristic_Summary1-compressed.pdf

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

GUI frameworks
• Web: HTML and CSS
• macOS / iOS: Cocoa and Cocoa Touch, SwiftUI
• .NET: WinForms
• Android: Jetpack Compose
• Java: AWT, Swing, JavaFX

30

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

HTML
• Building block of the web: https://developer.mozilla.org/en-US/docs/Web/HTML
• Defines the meaning and structure of web content
• Companion technologies

• Web page's appearance (CSS)
• Web page's functionality (JavaScript)

• Provides basic user interface elements and layouts
• Text, link, button, label, select, input, table
• https://developer.mozilla.org/en-US/docs/Web/HTML/Element

• CSS allows defining style for these elements
• Color, size, font, padding, margin, etc.
• https://developer.mozilla.org/en-US/docs/Web/CSS

31

https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/CSS

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

SwiftUI
• Modern way to declare user interfaces for any Apple platform
• https://developer.apple.com/tutorials/swiftui

32

https://developer.apple.com/tutorials/swiftui

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Jetpack Compose
• Modern toolkit to declare native user interfaces on Android
• https://developer.android.com/jetpack/compose

33

https://developer.android.com/jetpack/compose

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Outline
• Usability
• JavaFX
• Layout
• User input
• Shapes
• Styling

35

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

JavaFX
• Open source, next-generation client application platform for desktop, mobile

and embedded systems built on Java: https://openjfx.io
• Great tutorial: https://jenkov.com/tutorials/javafx/index.html
• Comes with a large set of built-in GUI components, like buttons, text fields,

tables, trees, menus, charts and much more
• Can be styled via CSS and/or programmatically
• Has support for 2D and 3D Graphics
• Has a WebView which can display modern web applications

36

https://openjfx.io
https://jenkov.com/tutorials/javafx/index.html

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

JavaFX features
• Written in Java and platform-independent
• FXML enables developers to create a user interface in a JavaFX application

separately from implementing the application logic
• Scene builder: drag and drop UI components
• Swing interoperability
• Built-in controls
• CSS support
• Canvas
• Printing API

37

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

FXML
• XML-based language that provides the structure for building a user interface

separate from the application logic of your code
• https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html

38

<?xml version="1.0" encoding="UTF-8"?>
<?import javafx.geometry.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.text.*?>
<GridPane fx:controller="de.tum.in.ase.SignInController" xmlns:fx="http://javafx.com/fxml"  
 alignment="center" hgap="10" vgap="10">
 <padding><Insets top="25" right="25" bottom="10" left="25"/></padding>
 <Text text="Welcome" GridPane.columnIndex="0" GridPane.rowIndex="0" GridPane.columnSpan="2"/>
 <Label text="User Name:" GridPane.columnIndex="0" GridPane.rowIndex="1"/>
 <TextField GridPane.columnIndex="1" GridPane.rowIndex="1"/>
 <Label text="Password:" GridPane.columnIndex="0" GridPane.rowIndex="2"/>
 <PasswordField fx:id="passwordField" GridPane.columnIndex="1" GridPane.rowIndex="2"/>
 <HBox spacing="10" alignment="bottom_right" GridPane.columnIndex="1" GridPane.rowIndex="4">
 <Button text="Sign In" onAction="#handleSubmitButtonAction"/>
 </HBox>
 <Text fx:id="actiontarget" GridPane.columnIndex="1" GridPane.rowIndex="6"/>
</GridPane>

https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Scene builder
• Visual layout tool that lets developers quickly design JavaFX user interfaces

without coding
• Developers can drag and drop UI components to a work area, modify their

properties, and apply style sheets
• The FXML code for the layout that they are creating is automatically

generated in the background
• The result is an FXML file that can then be combined with a Java project by

binding the UI to the application’s logic
• https://www.oracle.com/java/technologies/javase/javafxscenebuilder-info.html

39

https://www.oracle.com/java/technologies/javase/javafxscenebuilder-info.html

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Scene builder

40

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

JavaFX application

41

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

JavaFX application

42

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Interactive tutorial: create a simple JavaFX application
• Create a new Java Gradle project in IntelliJ

43

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Interactive tutorial: create a simple JavaFX application
• Open the build.gradle and insert the following code

44

plugins {
 id 'application'
 id 'org.openjfx.javafxplugin' version '0.1.0'
 id 'java'
}
java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}
version = '1.0.0'
compileJava.options.encoding = 'UTF-8'

repositories {
 mavenCentral()
}

javafx {
 version = '17.0.17'
 modules = ['javafx.base', 'javafx.controls', 'javafx.fxml', 'javafx.media']
}

application {
 mainModule = 'JavaFxHelloWorld.main'
 mainClass = 'de.tum.in.ase.JavaFxHelloWorld'
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

• Create a new package de.tum.in.ase and add a new class
JavaFxHelloWorld

45

Interactive tutorial: create a simple JavaFX application

package de.tum.in.ase;

import javafx.application.Application;
import javafx.stage.Stage;

public class JavaFxHelloWorld extends Application {

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Hello World!");
 primaryStage.show();
 }

 public static void main(String[] args) {
 Application.launch(JavaFxHelloWorld.class, args);
 }
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

• Create module-info.java in the root package

46

Interactive tutorial: create a simple JavaFX application

module JavaFxHelloWorld.main {
 requires javafx.graphics;
 requires javafx.fxml;
 requires javafx.controls;
 opens de.tum.in.ase to javafx.graphics, javafx.fxml;
 exports de.tum.in.ase;
}

• Run the application

Run the application

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

The lifecycle of a JavaFX application
• Entry point of JavaFX applications: the class Application
• The JavaFX runtime does the following, in order, when an application is launched

1. It creates an instance of the specified Application class
2. It calls the init() method of the Application class
3. It calls the start() method
4. The application is visible in the foreground, the runtime waits for the application to finish

• The application exits when one of the following occurs
• The app calls Platform.exit()
• The last window of the app is closed
• Before exiting, the stop() method of Application class is called

• You can override init(), start() and stop() to perform any initialization
and cleanup of resources used by your application

47

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Interactive tutorial: FXML
• Change JavaFxHelloWorld

48

package de.tum.in.ase;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class JavaFxHelloWorld extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 Parent root = FXMLLoader.load(getClass().getClassLoader().getResource("example.fxml"));
 Scene scene = new Scene(root, 300, 275);
 primaryStage.setTitle("FXML Welcome");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Interactive tutorial: FXML
• Add a new class SignInController in the package de.tum.in.ase

49

package de.tum.in.ase;

import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.scene.control.PasswordField;
import javafx.scene.text.Text;

public class SignInController {

 @FXML public PasswordField passwordField;

 @FXML private Text actiontarget;

 @FXML protected void handleSubmitButtonAction(ActionEvent event) {
 actiontarget.setText("Sign in button pressed");
 }
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Interactive tutorial: FXML
• Create a new file example.fxml in the resources folder

50

<?xml version="1.0" encoding="UTF-8"?>
<?import javafx.geometry.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.text.*?>
<GridPane fx:controller="de.tum.in.ase.SignInController" xmlns:fx="http://javafx.com/fxml"
 alignment="center" hgap="10" vgap="10">
 <padding><Insets top="25" right="25" bottom="10" left="25"/></padding>
 <Text text="Welcome" GridPane.columnIndex="0" GridPane.rowIndex="0" GridPane.columnSpan="2"/>
 <Label text="User Name:" GridPane.columnIndex="0" GridPane.rowIndex="1"/>
 <TextField GridPane.columnIndex="1" GridPane.rowIndex="1"/>
 <Label text="Password:" GridPane.columnIndex="0" GridPane.rowIndex="2"/>
 <PasswordField fx:id="passwordField" GridPane.columnIndex="1" GridPane.rowIndex="2"/>
 <HBox spacing="10" alignment="bottom_right" GridPane.columnIndex="1" GridPane.rowIndex="4">
 <Button text="Sign In" onAction="#handleSubmitButtonAction"/>
 </HBox>
 <Text fx:id="actiontarget" GridPane.columnIndex="1" GridPane.rowIndex="6"/>
</GridPane>

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Interactive tutorial: FXML
• Run the application again

51

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Overview of JavaFX user interface concepts
• Layouts
• Controls for user input
• Shapes
• Styling

52

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Layouts

53

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Controls for user input

54

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Shapes

55

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Styling

56

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Outline
• Usability
• JavaFX
• Layout
• User input
• Shapes
• Styling

58

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces 59

Coordinate system
• Starts from the left upper corner in JavaFX

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces 60

Layout
• The class Layout decides how sub

nodes (e.g. buttons) are distributed
inside the window

• Decides in which position the buttons
and other components are positioned
• Example: if controls are aligned, e.g. in the

form of a matrix
• Example: which controls become smaller/

larger when the window is resized, etc.

• JavaFX provides many types of layouts
for organizing nodes in a scene

Stage
Scene

Layout (Pane)

Controls (Nodes)

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces 61

Stack layout
• Places the controls on top of each other in the center of the layout

public class StackLayoutApp extends Application {
 @Override
 public void start(Stage stage) {
 StackPane spane = new StackPane();
 spane.getChildren().add(new Label("Stack Layout"));

 Scene scene = new Scene(spane, 300, 300);
 stage.setTitle("Stack Layout");
 stage.setScene(scene);
 stage.show();
 }
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces 62

Flow layout
• Places the controls row-by-row horizontally or column-by-column vertically

public class FlowLayoutApp extends Application {
 @Override
 public void start(Stage stage) {
 FlowPane fpane = new FlowPane();
 fpane.setHgap(25);
 fpane.setVgap(15);
 fpane.setAlignment(Pos.CENTER);
 fpane.getChildren().addAll(new Label("Label 1"),
 new Label("Label 2"),
 new Button("Button 1"),
 new Label("Label 3"),
 new Button("Button 2"));
 Scene scene = new Scene(fpane, 300, 300);
 stage.setTitle("Flow Layout");
 stage.setScene(scene);
 stage.show();
 }
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces 63

Grid layout
• Places the controls in different cells in a two-dimensional grid
public class GridLayoutApp extends Application {
 @Override
 public void start(Stage stage) {
 GridPane gpane = new GridPane();
 gpane.setHgap(25);
 gpane.setVgap(15);
 gpane.setAlignment(Pos.CENTER);
 gpane.add(new Label("Label 1"), 0, 0);
 gpane.add(new Button("Button 1"), 1, 0);
 gpane.add(new Label("Label 2"), 0, 1);
 gpane.add(new Button("Button 2"), 1, 1);
 gpane.add(new TextField("Text Field 1"), 1, 2);
 gpane.add(new Button("Button 3"), 0, 3);
 Scene scene = new Scene(gpane, 300, 300);
 stage.setTitle("Grid Layout");
 stage.setScene(scene);
 stage.show();
 }
}

You can locate
the controls in
different cells

Note that (0,0) is in
this example the top
left corner in the grid

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces 64

Border layout
• Places the controls in the top, right, center, left, and bottom regions
public class BorderLayoutApp extends Application {
 @Override
 public void start(Stage stage) {
 BorderPane bpane = new BorderPane();
 bpane.setTop(new CustomLayout("Top"));
 bpane.setBottom(new CustomLayout("Bottom"));
 bpane.setRight(new CustomLayout("Right"));
 bpane.setLeft(new CustomLayout("Left"));
 bpane.setCenter(new CustomLayout("Center"));
 Scene scene = new Scene(bpane, 300, 300);
 stage.setTitle("Border Layout");
 stage.setScene(scene);
 stage.show();
 }

 static class CustomLayout extends StackPane {
 public CustomLayout(String title) {
 getChildren().add(new Label(title));
 setStyle("-fx-border-color: blue");
 setPadding(new Insets(30,30,30,30));
 }
 }
}

Extends from
StackPane

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces 65

HBox and VBox layout
• Places the controls in a single row (HBox) or a single column (VBox)
public class BoxLayoutApp extends Application {
 @Override
 public void start(Stage stage) {
 BorderPane layout = new BorderPane();

 HBox hBox = new HBox(15);
 hBox.setPadding(new Insets(20, 20, 20, 20));
 hBox.setStyle("-fx-border-color: blue");
 hBox.getChildren().add(new Label("Label 1"));
 hBox.getChildren().add(new Label("Label 2"));
 hBox.getChildren().add(new Button("Button 1"));
 layout.setTop(hBox);

 VBox vBox = new VBox(15);
 vBox.setStyle("-fx-border-color: blue");
 vBox.setPadding(new Insets(20, 20, 20, 20));
 vBox.getChildren().add(new Button("Button 2"));
 vBox.getChildren().add(new Label("Label 3"));
 vBox.getChildren().add(new Button("Button 3"));
 layout.setBottom(vBox);

 Scene scene = new Scene(layout,300, 300);
 stage.setTitle("HBox & VBox Layout");
 stage.setScene(scene);
 stage.show();
 }
}

Places controls
in a single row

Places controls in
a single column

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Outline
• Usability
• JavaFX
• Layout
• User input
• Shapes
• Styling

66

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Model view controller (MVC)

67

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

User input
• Controls allow users to provide information to the program: TextField,
PasswordField, etc.

• There are elements for providing some status to the program such as
CheckBox, ChoiceBox, etc.

• Some controls allow users to see information: Label, ListView,
TableView, etc.

68

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

User input

69

• Label
• Button
• Radio Button
• Toggle Button
• Checkbox
• Choice Box
• Text Field
• File Chooser
• Color Picker

• Password Field
• Scroll Bar
• Scroll Pane
• List View
• Table View
• Tree View
• Tree Table View
• Combo Box
• Pagination Control

• Separator
• Slider
• Progress Bar and Progress

Indicator
• Hyperlink
• Tooltip
• HTML Editor
• Titled Pane and Accordion
• Menu
• Date Picker

More information on: https://docs.oracle.com/javase/8/javafx/user-interface-tutorial/ui_controls.htm

https://docs.oracle.com/javase/8/javafx/user-interface-tutorial/ui_controls.htm

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Label

70

public class LabelApp extends Application {
 @Override
 public void start(Stage stage) {
 GridPane gpane = new GridPane();

gpane.setAlignment(Pos.CENTER);
gpane.setVgap(10);
gpane.setPadding(new Insets(25, 25, 25, 25));
Label label1 = new Label("Welcome to INFUN");
label1.setFont(new Font("Cambria", 20));
gpane.add(label1, 0, 0);
Label label2 = new Label("Heilbronn");
label2.setTextFill(Color.BLUEVIOLET);
gpane.add(label2, 0, 1);
Label label3 = new Label("2022 - 2023");
gpane.add(label3, 0, 2);
Scene scene = new Scene(gpane, 300, 300);
stage.setTitle("Label Example");
stage.setScene(scene);
stage.show();

}

Provide several
properties to the label

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Button

71

Buttons fire action events when they are activated  
(e.g. clicked, a keybinding for the button is pressed, ...)

Button button = new Button();
button.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 System.out.println("Hello World!");
 }
});

If you are using Java 8+, you can use lambdas for action listeners
Button button = new Button();
button.setOnAction((ActionEvent action) -> System.out.println("Hello World!"));
// or
button.setOnAction(action -> System.out.println("Hello World!"));

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Button

72

public class ButtonApp extends Application {
 @Override
 public void start(Stage stage) {
 VBox vBox = new VBox();
 vBox.setAlignment(Pos.CENTER);
 vBox.setSpacing(10);
 Button button = new Button("Print Hello INFUN!");

 button.setOnAction(action -> System.out.println("Hello INFUN!"));

 vBox.getChildren().addAll(button);
 Scene scene = new Scene(vBox, 300, 300);
 stage.setTitle("Button Example");
 stage.setScene(scene);
 stage.show();
 }
}

Hello INFUN!Output

You can provide some
properties to the button

When the user presses
the button, the lambda

function is invoked

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Button

73

button.setGraphic(new ProgressBar(-1));

Buttons can have a graphic element: this can be any JavaFX node, like a ProgressBar

button.setGraphic(new ImageView("images/icon.png"));

button.setGraphic(new Button("Test"));

An ImageView

Or even another button

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Button

74

public class ButtonApp extends Application {
 @Override
 public void start(Stage stage) {
 GridPane gpane = new GridPane();
 gpane.setAlignment(Pos.CENTER);
 gpane.setHgap(10);
 gpane.setVgap(10);
 gpane.setPadding(new Insets(25, 25, 25, 25));

 Label label1 = new Label("");
 label1.setFont(new Font("Cambria", 20));
 gpane.add(label1, 1, 0);

 Button button1 = new Button("Show");
 button1.setOnAction(action -> label1.setText("INFUN"));
 gpane.add(button1, 0, 1);

 Button button2 = new Button("Delete");
 button2.setOnAction(action -> label1.setText(""));
 gpane.add(button2, 2, 1);

 Scene scene = new Scene(gpane, 300, 300);
 stage.setTitle("Button Example");
 stage.setScene(scene);
 stage.show();
 }
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Text field

75

public class TextFieldApp extends Application {
 @Override
 public void start(Stage stage) {
 VBox vBox = new VBox();
 vBox.setAlignment(Pos.CENTER);
 vBox.setSpacing(10);

 TextField txt = new TextField();
 txt.setPromptText("Insert text");

 Label label1 = new Label("");
 label1.setFont(new Font("Cambria", 20));

 Button button1 = new Button("Print Out!");
 button1.setOnAction(action -> {
 label1.setText(txt.getText());
 label1.setTextFill(Color.BLUEVIOLET);
 });

 vBox.getChildren().addAll(txt, button1, label1);
 Scene scene = new Scene(vBox, 300, 300);
 stage.setTitle("TextField Example");
 stage.setScene(scene);
 stage.show();
 }
}

You can provide several
properties to the TextField

You can get information
from the TextField

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces 76

• Problem statement: develop the user interface of an email generator
• Users can input their first name and the institution they belong to with two

TextFields
• The button "Generate" will print out your email in a label in this format 
 
name@institution.de

• Hint: you can re-use the code from the previous slide

W11E02 - Email generator Not started yet.

Due by tonightStart exercise Easy

10 min

3 pts

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Outline
• Usability
• JavaFX
• Layout
• User input
• Shapes
• Styling

81

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Shapes
• JavaFX provides many shape classes for drawing texts, lines, circles,

rectangles, ellipses, arcs, polygons, and polylines

82

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Line

83

public class LineApp extends Application {
 @Override
 public void start(Stage stage) {
 Pane layout = new Pane();

 Line line1 = new Line(10, 10, 10, 10);
 line1.endXProperty().bind(layout.widthProperty().subtract(10));
 line1.endYProperty().bind(layout.heightProperty().subtract(10));
 line1.setStrokeWidth(5);
 line1.setStroke(Color.RED);

 Line line2 = new Line(10, 10, 10, 10);
 line2.startXProperty().bind(layout.widthProperty().subtract(10));
 line2.endYProperty().bind(layout.heightProperty().subtract(10));
 line2.setStrokeWidth(3);
 line2.setStroke(Color.BLUE);

 layout.getChildren().add(line1);
 layout.getChildren().add(line2);

 Scene scene = new Scene(layout, 300, 300);
 stage.setTitle("Lines example");
 stage.setScene(scene);
 stage.show();
 }
}

startX, startY, endX, endY

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Rectangle

84

public class RectangleApp extends Application {
 @Override
 public void start(Stage stage) {
 Pane layout = new Pane();

 Rectangle rect1 = new Rectangle(25, 10, 60, 30);
 rect1.setStroke(Color.BLACK);
 rect1.setFill(Color.WHITE);
 Rectangle rect2 = new Rectangle(25, 50, 60, 30);

 layout.getChildren().add(new Text(10, 27, "r1"));
 layout.getChildren().add(rect1);
 layout.getChildren().add(new Text(10, 67, "r2"));
 layout.getChildren().add(rect2);

 for (int i = 0; i < 4; i++) {
 Rectangle rect = new Rectangle(150, 75, 100, 30);
 rect.setRotate(i * 360.0 / 8.0);
 Color color = Color.color(Math.random(), Math.random(), Math.random());
 rect.setStroke(color);
 rect.setFill(Color.WHITE);
 layout.getChildren().add(rect);
 }
 Scene scene = new Scene(layout, 300, 300);
 stage.setTitle("Rectangle example");
 stage.setScene(scene);
 stage.show();
 }
}

x, y, width, height

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Circle

85

public class CircleApp extends Application {
 @Override
 public void start(Stage stage) {
 Pane layout = new Pane();

 Circle circle = new Circle();
 circle.setCenterX(150);
 circle.setCenterY(150);
 circle.setRadius(75);
 circle.setStroke(Color.BLUE);
 circle.setFill(Color.YELLOWGREEN);

 layout.getChildren().add(circle);
 Scene scene = new Scene(layout, 300, 300);
 stage.setTitle("Circle example");
 stage.setScene(scene);
 stage.show();
 }
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Ellipse

86

public class EllipseApp extends Application {
 @Override
 public void start(Stage stage) {
 Pane layout = new Pane();

 Ellipse ellipse = new Ellipse();
 ellipse.setCenterX(150);
 ellipse.setCenterY(150);
 ellipse.setRadiusX(75);
 ellipse.setRadiusY(50);
 ellipse.setStroke(Color.BLUE);
 ellipse.setFill(Color.YELLOWGREEN);

 layout.getChildren().add(ellipse);
 Scene scene = new Scene(layout, 300, 300);
 stage.setTitle("Ellipse example");
 stage.setScene(scene);
 stage.show();
 }
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Polygon

87

public class PolygonApp extends Application {
 @Override
 public void start(Stage stage) {
 Pane layout = new Pane();

 Polygon polygon = new Polygon();
 polygon.getPoints().addAll(150.0, 5.0, 200.0,
 35.0, 235.0, 145.0, 175.0, 200.0, 50.0,
 200.0, 35.0, 145.0, 60.0, 85.0);

 polygon.setStroke(Color.BLUE);
 polygon.setFill(Color.YELLOWGREEN);

 layout.getChildren().add(polygon);

 Scene scene = new Scene(layout, 300, 300);
 stage.setTitle("Polygon example");
 stage.setScene(scene);
 stage.show();
 }
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Outline
• Usability
• JavaFX
• Layout
• User input
• Shapes
• Styling

88

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Styling
• JavaFX allows to apply style properties to Stages, Layouts, and Controls
• Providing style to the GUI will improve the user experience of the program

89

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Font

90

label.setFont(Font.font("Calibri"));

You can set the font of a JavaFX control using the setFont() method

The Font class also lets you specify
the font weight and the font size

label.setFont(Font.font("Calibri", FontWeight.BOLD, 36));

javafx.scene.text.Font is used in this example

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Fill color
• You can set the fill color of a control
• The fill color is the "inside" color used to draw the text
• You set the fill color of a control via its setTextFill() method, which takes a
Color object as a parameter

• The Color class also has a set of static factory methods that can help you create
Color instances using a variety of different parameters

91

label.setTextFill(Color.GREEN);

label.setTextFill(Color.web("#ffc0cb")); //Pink

label.setTextFill(Color.rgb(100, 200, 0)); //Green

label.setTextFill(Color.grayRgb(100)); //Gray

label.setTextFill(Color.hsb(1.0, 0.7, 0.4)); //Brown

Creates a Color instance based
on a traditional web color code

Creates a Color instance from
red, green, and blue color values

Creates a Color instance
representing a gray color

Creates a Color instance based on
Hue, Saturation and Brightness (HSB)

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Position
• The X and Y position of a control determines where inside its parent container

element the control is displayed - provided the parent container respects this
position (Pane does, VBox does not)

• You can set the X and Y position of a control using its methods
setLayoutX() and setLayoutY()

92

label.setLayoutX(40);
label.setLayoutY(130);

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

CSS styling
• JavaFX enables you to style the components using CSS, just like you can

style HTML and SVG elements in web pages with CSS
• JavaFX uses the same CSS syntax as for the web, but the properties are

specific and have slightly different names than their web counterparts
• Styling JavaFX applications using CSS helps to separate styling (looks) from

the application code
• This results in a cleaner application code and makes it easier to change the

styling of the application or to support multiple themes (e.g., light vs. dark)

93

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

CSS styling
• CSS: cascading style sheets
• Simple (domain specific) language that specifies how a user interface appears
• Originally created for the web
• You can use CSS to style a JavaFX user interface
• A style sheet is a text file containing one or more style definitions, written in

the following general format

94

selector {
 property: value;
 property: value;
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

CSS styling example
• This style definition specifies that label controls should display their text in a

cursive, 14-point, italic, bold font, with a dotted border around the control

95

.label {
 -fx-font-family: cursive;
 -fx-font-size: 14pt;
 -fx-font-style: italic;
 -fx-font-weight: bold;
 -fx-border-style: dotted;
}

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces 96

• Problem statement: create the TUM Logo in JavaFX using rectangles
• Hint: you can use the following code

public class TUMLogoApplication extends Application {
 private static final Color TUM_BLUE = Color.rgb(0, 101, 189); // TUM Blue
 private static final double UNIT = 50; // One measurement unit
 private final Pane pane = new Pane();

 @Override
 public void start(Stage stage) {

 // ... Add rectangles using the method below to draw the TUM Logo
 Scene scene = new Scene(pane, 24 * UNIT, 15 * UNIT);
 stage.setTitle("TUM Logo");
 stage.setScene(scene);
 stage.show();
 }
 private void addRectangleToPane(double x, double y, double width, double height, Color color) {
 Rectangle rectangle = new Rectangle(x, y, width, height);
 rectangle.setFill(color);
 pane.getChildren().add(rectangle);
 }
}

W11E03 - TUM Logo Not started yet.

Due by tonightStart exercise Easy

10 min

4 pts

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces 98

Next steps
• Tutor group exercise

• T11E01 - Number Conversion

• Homework exercise
• H11E01 - Welcome to SealTemis

• Project work
• Implement the game

• Read the following articles
• https://www.baeldung.com/javafx
• https://www.vojtechruzicka.com/javafx-getting-started

→ Due by Wednesday, January 14, 13:00

https://www.baeldung.com/javafx
https://www.vojtechruzicka.com/javafx-getting-started

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

• Usability and user experience are important aspects in programming and
software engineering
• They can be a deciding factor whether your application is successful or not
• Prototyping allows to experiment quickly and to identify strengths and weaknesses of

the designed graphical user interface (GUI)

• There are different GUI frameworks for different platforms and programming
languages

• They all have common characteristics such as layouts, controls, shapes,
styling

• JavaFX is one example of a GUI framework for Java-based applications

Summary

99

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

References
• J. Nielsen, Usability Engineering, Academic Press, 1993
• Recommendation: D. Norman, The Design of Everyday Things, Doubleday, 1998
• https://www.nngroup.com/articles/ten-usability-heuristics
• J. Nielsen, How to conduct a Heuristic Evaluation https://www.nngroup.com/articles/how-to-

conduct-a-heuristic-evaluation
• H. Petroski, Success through Failure: The Paradox of Design, Princeton Press, 2008
• Recommendation: The Iceberg Secret Revealed https://www.joelonsoftware.com/articles/

fog0000000356.html
• P. M. Fitts, The information capacity of the human motor system in controlling the amplitude of

movement. Journal of Experimental Psychology, 47, 381-391, 1954
• K. Popper, Objective Knowledge: An Evolutionary Approach, Oxford University, 1972
• https://www.baeldung.com/javafx
• https://www.vojtechruzicka.com/javafx-getting-started

100

https://www.nngroup.com/articles/ten-usability-heuristics
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation
http://www.joelonsoftware.com/articles/fog0000000356.html
http://www.joelonsoftware.com/articles/fog0000000356.html
https://www.baeldung.com/javafx
https://www.vojtechruzicka.com/javafx-getting-started

© 2026 Stephan Krusche Introduction to Programming - W11 Graphical User Interfaces

Further readings: user interface design guidelines
• macOS and iOS user experience  

https://developer.apple.com/design/human-interface-guidelines/
• Android: https://developer.android.com/design/index.html
• Windows user experience interaction guidelines  

https://docs.microsoft.com/en-us/windows/apps/design/

101

https://developer.apple.com/design/human-interface-guidelines/
http://developer.android.com/design/index.html
https://docs.microsoft.com/en-us/windows/apps/design/

